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In this paper the diffusion equation of the electromagnetic field in ferromagnetic materials is 
studied. The main difficulty in this equation lies in the nonlinear magnetic characteristic, that 
results in a nonlinear diffusion equation. To select a tinite difference scheme to solve this non- 
linear diffusion equation, a comparative analysis of the main difference schemes is made. 
Given the difficulties introduced by the nonlinear magnetic relationship we suggest an ordered 
comparative study. c’ 1986 Academic Press, Inc. 

1. INTRODUCTION 

The diffusion equation of an electromagnetic field is a partial differential equation 
of parabolic type. If we deal with ferromagnetic media, an additional complexity 
arises due to the nonlinear B/H relationship. The differential equation is then of the 
form 

Zl,, + B( 24) u, = 0 (1) 

where p is a function of the dependent variable but not of its derivatives. The 
equation is thus called quasi-linear [l]. 

The state-of-the-art in this field is still very fragmentary [a]. Given the incom- 
plete theoretical knowledge of these matters, only numerical experimentation can 
ultimately decide what is the best finite difference scheme for a parabolic problem. 
This experimentation should be carried out with comparative studies, but as Lim 
and Hammond [3] point out, these studies are unfortunately rarely shown in the 
literature, resulting in the absence of a practical comparison. 

The problem of selecting a finite-difference method to solve the electromagnetic 
field diffusion equation is treated in this paper. Given that the behavior of the 
equation is strongly dependent on the type of B/H relationship, we decided on a 
comparative study of the difference schemes for each type of relationship. As a 
reference to make the comparison, we first considered a linear magnetic charac- 
teristic, which allowed us to solve the diffusion equation with linear techniques and 
establish the reference for the comparative study. 
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2. THE DIFFUSION EQUATION AND THE B/N 

The behavior of an electromagnetic field is basically determined by the diffusioc 
equation 

where H is the magnetic field and B the flux density. 
Considering the l-dimensional equation for the 25 component of the field inside a 

conductor plate of uniform conductivity gives (Fig. 1) 

with the boundary conditions 

H( *d, t) = Ho sin ot O<i !I‘?/ 

where HO is the surface field amplitude. Only half the lamination need be con- 
sidered as H is symmetrical about the center plane and hence 

can be used as an alternative boundary condition. 
The diffusion equation is nonlinear through the term related to the &ii 

relationship. For convenience we will write 

FIG. 1. Conductor plate. 
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FIG. 2. Magnetic relationships: (a) linear curve; (b) nonlinear monovalued curve; (c) nonlinear 
bivalued curve; (d) family of nonlinear bivalued curves. 

and throughout the study, this will be a constant or a function of H, according to 
the magnetic characteristic being considered. 

To obtain a solution for the diffusion equation one needs to know the 
relationship of magnetic field strength H to flux density B. Depending on the type 
of material and magnetic behavior simplifications, the magnetic characteristic can 
be approximated by a straight line, a monovalued curve, a bivalued curve or a 
family of bivalued curves, each loop corresponding to a depth inside the material 
(Fig. 2). For thick ferromagnetic samples under UC magnetization-our main 
objectives-the B/H relationship would be a family of bivalued curves, constructed 
in such a manner that in the steady state each curve applies to a specific depth. 

The numerical behavior of the finite-difference schemes in nonlinear equations is 
not well known, and the situation is still worse if we are dealing with a nonlinearity 
as complex as that in Fig. 2d. With the objective of finding the most suitable dif- 
ference method, we suggest an ordered comparative study of the difference schemes. 
Beginning with the linear B/H relationship, which has a well known solution that 
allows us to establish a reference case, we then consider a nonlinear monovalued 
curve: then we introduce the bivalued function; and finally the depth variation is 
introduced. For every additional difficulty, the numerical behavior of the schemes is 
studied, rejecting unstable ones or those with serious difficulties. MKS units are 
used throughout the study. 

3. SOLUTION OF THE DIFFUSION EQUATION: DIFFERENCE SCHEMES 

When a finite difference method is used, the continuous variable is replaced by a 
discrete variable that only possesses a value at the nodes in a space-time grid. If the 
plate surface is taken as the origin, the coordinates are 

x=(i-1)dx i = 1, 2, 3 ,..., M (8) 

t=(k-1)dt k = 1, 2, 3 ,..., N (9) 
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where the mesh length Ax is the distance between adjacent nodes in space and Al is 
the time interval between successive values of Hi appearing at the space node t. It is 
helpful to think of the solution as marching forward in time, each step moveing bt, 
generating the electromagnetic transient as it progresses. 

An important question is the choice of the space-line grid. In this paper, the final 
space-time grid considered for each case, is that which gives values which cannot be 
significantly improved by making the grid finer. 

In this study, the significant difference schemes wil be considered: the simple 
explicit [2, 41, the simple implicit [2,4], the I&fort-Franke? [5] and the Crank- 
Nicolson [6] schemes. If the intermedial variables 

p = j?(Ax)“,‘At l,iO) 

r= l/p [Blj 

cr=2r/(2r+ 1) (13j 

are defined, the finite-difference analog of the diffusion equation, for each SC 
are respectively 

Hi,k -t 1 = rff- l,k + (1 - 2rj H~J. + rHi+ i.k (13) 

Hi- l,k+ 1 -(2r+p)Hi,k;,+Hi+I,k+L= -df,& ir4;1 

Hi,k+1=clHi~l.k+(1-2CI)N;,li-,I~~i+!.k (15) 

Hi-,,k+l -(2-2p)H;.k+L+Hi+l,k+,= -H,~,,li$-(2-2p)Nj.k-H,+I.k.(ldjj 

Equations (13) and ( 15) are explicit, as Hi,& + I is derived SOleiy from in due: 

previous time rows. The other two equations (14) and ( 16) are implicit as there are 
three new values of the dependent variable which have to be solved simuitaneously 
with the values that appear in the finite-difference equations associated with the 
other nodes. The coefficient matrix of the set of equations is tridiagonal and the set 
can be readily solved by gaussian elimination [7]. 

The numerical solution is a step-by-step process and gradually moves through 
the transient to the steady state field distribution, which is the objective. If N is the 
number of time steps corresponding to a half cycle of the surface field. then the 
solution reaches the steady state when. 

H+ = -Hi.k ~ i\;. (l-7) 

To check this, 

Q = HM,, - HM,, - .\’ (1%) 

is examined at the end of a half cycle. The center node M is chosen for improved 
accuracy. Thus, the steady state is reached when 

Q d Qrer i19: \ I 

where Qrel is specified as a fraction of the amplitude of the center plane field. 

581.65 I-13 



436 MARTINEZ, MUr;OZ, AND SUCH 

It is sometimes useful to attempt to accelerate the transient, in such a way that 
Eq. (17) be fulfilled. Therefore, we require a correction factor Ki, such that 

(Hi,k-Kj)+ iHi,k-NNKj)=O. (20) 

Then this correction factor is given by 

Kj= +(H,, + Hi,I,- h;) 

and the corrected values of Hi,, which we call Hi,k are 

H:,k = H;.k - K, = f( Hi,, - H;,, _ N). 

i21) 

(22) 

If we are working near the “knee” of the magnetization characteristic, application 
of (22) once every half-cycle can reduce the computation required to reach the 
steady state solution by more than half [S], otherwise, the improvement may be 
negligible. 

4. COMPARATIVE ANALYSIS FOR THE LINEAR PROBLEM 

As a first step towards the comparative analysis of the difference schemes con- 
sidered, the stability problem was studied. The simple implicit, Dufort-Frankel and 
Crank-Nicolson schemes are stable for all values of Ax and At [ 1, 2,4, 71. 
However, this is not the case for the simple explicit scheme, which suffers from the 
severe restriction [2, 41 

r<f (23) 

which is necessary to ensure stability. The coefficient /I (7) will never be less than 
two for the conductive materials of interest, so that in the worst case the time inter- 
val is so small that the scheme is computationally inefficient. For this reason, we 
rejected this scheme and only considered the other three schemes. 

The question of convergency of numerical methods is difficult to show and so the 
looser concept of compatibility is often used [7, 8, 91. This is associated with the 
truncation error which is the difference between the partial differential and the 
finite-difference equations rather than that of their solutions. If L is the partial dif- 
ferential operator and Lf the finite difference operator the truncation error T is 
defined as follows 

T = L.,H - LH. (24) 

If T tends to zero as Ax and At tend to zero, the finite-difference scheme is com- 
patible. For linear initial value problems, stability and compatibility imply con- 
vergence [S, 10, 111. 
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The truncation errors of the schemes are given by 

Simple explicit @At+ (dx)‘) (251 

Simple implicit O(At + (Ax)‘) i’26) 

Dufort-Frankel 0 (At)Z+ (Ax)% u 
( 

/Ai 2 

L H 
{rn?! 

_ I 
CrankkNicolson O((At)? + (Axy) (28; 

obtained from the neglected terms of the Taylor series. The truncation error of the 
Dufort-Frankel scheme has an additional term which implies that the ratio dtjdx 
must tend to zero as Ax and At separately tend to zero. Otherwise we would be 
solving the hyperbolic equation 

In practice, if 

the DuforttFrankel scheme is compatible with the diffusion equation [S]. 
After considering the above, we can say that 

(aj The truncation errors of the simple explicit and implicit schemes are or’ 
the same order, but due to the stability restriction of the former its disadvantage 
with respect to the latter is evident. 

(b) With a given Ax and At and as long as Eq. { 30) is satisfied, the Dufort- 
Frankel and Crank-Nicolson schemes are more accurate than the simple implicit 
scheme. 

(c) The Crank-Nicolson scheme has a lower truncation error than the 
DuforttFrankel scheme but, as it is an implicit method, it is also slower. Thus. for 
certain applications, the Dufort-Frankel can be more convenient. 

To summarize for linear problems, if a given accuracy is desired, the time interval 
for the Dufort-Frankel scheme is greater than for the simple implicit scheme, while 
that for the Crank-Nicolson scheme can be superior to both. The time interval for 
the simple explicit scheme is the lowest, and, if Eq. (23) is not satisfied, the scheme 
is unstabie. 

Taking into account the error relationships, the superiority of the Dufort- 
Frankel and Crank-Nicolson schemes is evident. However, choosing between them 
is not obvious, because although the Crank-Nicolson has no restriction with 
respect to the interval ratio, it is an implicit scheme, whereas the Dufort-Frankel 
scheme exhibits ail the advantages of an explicit method. 



438 MARTINEZ, MUr;OZ, AND SUCH 

FIG. 3. Calculated amplitudes of H as a function of the depth in a linear material, using the simple 
implicit scheme. 

As a graphical verification of the analysis, and with the objective of studying the 
mesh discretization effect, we have represented the calculated solutions. In Figs. 3, 
4, and 5 the computed amplitudes for several time intervals is shown, together with 
the theoretical solution. The problem has been solved for a hypothetical, 
magnetically linear sheet [3] with the following characteristics p= pO= 
4n10-7Hm-‘, 0 = 5.8 x 107Q2-’ m-l, f= 50 Hz, d= lo-’ m. For all computations, 
Ax was taken as lop3 m. and the amplitude of the surface field was 100 A/m. 

The convergence regularity of the implicit schemes can be observed with respect 
to the Dufort-Frankel scheme which, although it has a truncation error lower than 

FIG. 4. Calculated amplitudes of H as a function of the depth in a linear material, using the 
Dufort-Frankel scheme. 
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FIG. 5. Calculated amplitudes of H as a function of the depth in a !inear materia?, using the Crank- 
Nicoison scheme. 

that of the simple implicit scheme, converges slowly to the theoretical solution 
because of the condition (30). The Crank-Nicolson scheme stands out as it 
provides very satisfactory values with relatively large interva!s. For the same inter- 
vals. the simple explicit scheme does not remain stable. 

The conclusions obtained with respect to the behavior of the schemes for the 
linear problem act as a basis for comparison in the nonlinear problem. We tviil 
analyze the stability and convergence as a function of the mesh discretization, the 
effects of the nonlinearity on the computation process and the solutions. 

5. THE NONLINEAR PROBLEM 

The fact that a partial differential equation is nonlinear, does not have to exclude 
a soiution using linear techniques. Linear techniques can be used whenever the 
finite-difference representation can be expressed as a Linear algebraic equation of its 
unknowns [‘i, 121. For the diffusion equation, where the coefftcient /I is a hmction 
of the field H, the difference equation can be made if we derive values for 0, whit 
do not depend on H,., + I. on the new time row (h- + 1). 

This can be done if b is computed from values on the time row (k). However, in 
problems of this type the total error is given by the inherent error of the finite dif- 
ference scheme and by the error obtained in the calculation of /I. As the time step 
used in the implicit schemes is relatively large, the error of p can also be large if it is 
calculated on time row (k), especially when saturation is considered. In implicit 
schemes this error can be reduced by using a predictor-corrector method [g? t2jV 
rhe difference equation thus remaining linear. This method consists of the 
calculation of the function on time row (k + 1) by evaluating ,/3 on time row (A-). 
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The values thus calculated are “predicted” values and are relatively inaccurate. 
With these values, p can be estimated on time row (k + 1 j and so the time row 
(k + 1) values can be recalculated, giving “corrected” values. This method is used 
for the simple implicit scheme. But for the Crank-Nicolson scheme, bearing in mind 
that the equation is centred on the intermediate node (i, k + tj, we should estimate 
/? at this point. The necessary value of H at node (i, k + $) can be obtained by using 
a half-time step Crank-Nicolson equation with p based upon node (i, k), so that 

pi& = /Ii& q. (31) 

Having thus obtained Hi,k + L.z, the value of /I can be calculated on the node 
(i, k + ij. For the full Crank-Nicolson step from the kth to the (k + 1 )th time row 
the coefficient is 

(Ax)2 
Pi.k + li2 = pi.k + l:? 7’ (32) 

The use of a predictor-corrector method implies that for the simple implicit and 
the Crank-Nicolson schemes and for the same Ax and At, a nonlinear problem 
requires twice as much calculation as the linear one. 

As for the Dufort-Frankel scheme, being an explicit method and because a small 
time step must be used, it does not require a predictor-corrector method. When 
applying the DuforttFrankel scheme, the absence of the Hi,k value in the difference 
equation suggests that /I is not related to Hi,!. On the other hand, using the average 
Of H;,, + I and Hi,k-, would make the finite-difference equations nonlinear. The 
average 

itHi+ I,k + Hi- 1.k) (33j 
is therefore employed [S]. 

6. COMPARATIVE ANALYSIS FOR 
A MONOVALUED MAGNETIC RELATIONSHIP 

Starting with the nonlinear problem, we will first consider a monovalued non- 
linear relationship, and then introduce the bivalued function. 

Given the linear character of the difference equation and in spite of the non- 
linearity of the differential equation, the implicit schemes remain stable. Douglas 
and Jones [13] have shown that this fact is true when the CrankPNicolson scheme, 
incorporating a predictor-corrector method, is applied to quite a comprehensive 
class of partial differential equations which includes equation (2). It is important to 
note that, given the form of the magnetic characteristic (Fig. 2b), the value of j3 is 
always positive; consequently the approximation is of a positive type, the stability 
being evident [2]. 
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However, this question is not so clear for the explicit methods. It can be shown 
[IO] that for the simple explicit scheme 

is a sufftcient condition for stability and convergence. owever, Lim and Hammond 
[3] have found experimentally that Eq. (23) is satisfactory. 

For the Dufort-Frankel scheme, Wiak [ 141 presents the conditions to solve :he 

nonlinear monovalued problem although incorporating the Sauiev difference 
diagram in the first row [ 151. He proves the stability of the difference diagram by 
means of the energy method [ 151 and the conditions for the minimum error of the 
approximation. 

With respect to convergence, the truncation errors maintain their stru.cture. 
However, the strong nonlinear character of the B/H relation makes the field 
variation within the material faster than the linear one. Thus, for the difference 
equation to follow these variations, the space-time grid must be finer, This signifies 
that, to obtain a similar accuracy to the linear case, the size of the intervals must be 
smaller. 

To summarize, the Dufort-Frankel scheme retains the essential advantage of an 
exphcit method. but also retains the condition (30). The simple implicit and the 
Crank-Nicolson schemes are unconditionally stable for all the problems and do not 
suffer from any restriction in the relation drjdx. However, the incorporation of a 
predictor-corrector method makes these implicit schemes slower. This fact, reduces 
the advantages of the Crank-Nicolson scheme with respect to the Dufort-Franked 
scheme, which can be more suitable. 

Figures 6, 7, and 8 show the above-mentioned considerations. We have rcprescn- 

FEG. 6. Calculated amplitudes of H as a function of the depth in a nonlinear material wi?h a 

monovalued E/H relationship, using the simple implicit scheme. 
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AX, At 
(mm)(msl 
0.?5,0.? 
0.1,O.l 

0.?5,0.1 
0.25,0.05 
0.25,0.025 
0.25,0.0125 

--- .125.0.1 

.125,0.05 

.125,0.025 
0.1,0.05 

----0.1,0.025 

FIG. 7. Calculated amplitudes of H as a function of the depth in a nonlinear material with a bivalued 
B/H relationship, using the Dufort-Frankel scheme. 

ted the calculated solutions obtained by means of the different schemes, taking as 
the magnetic characteristic the magnetization curve of the material considered. In 
this case, on the contrary to the linear problem, we do not know the exact solution, 
and so we have taken, as an approximation to this, the average of the optimal 
solutions of the two schemes with minimum error. The justification for this 
approximation is based on the fact that, in the linear problem, the Dufort-Frankel 
scheme converges to the theoretical solution by excess, while the Crank-Nicolson 
scheme converges by defect. From Figs. 7 and 8 this behavior appears to be the 
same in the nonlinear problem. This implies that we suppose both difference 

FIG. 8. Calculated amplitudes of H as a function of the depth in a nonlinear material with a bivalued 
B/H relationship, using the Crank-Nicolson scheme. 
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equations to converge to the same solution. This occurs if the same magnetic 
characteristic is considered independently of the fact that the difference equation 
correctly describes the physical phenomenon. The diffusion equation is solved for a 
steel plate with a half thickness d= 2.5 x 10W3 m, conductivity 5 = 5 x 10% .-i m ~ ’ 
and with a magnetization curve that can be approximated by the Frohch curve: 
B = H/(156 + 0.59H). The applied field is supposed to be 0000 A/m with a fre- 
quency of 50 Hz. 

In the figures we can observe that the implicit schemes continue converging 
monotonously and quickly, only by reducing the time intervals, although a little 
slower than in the linear case. As before, the Dufort-Frankel scheme keeps to the 
convergence limitation, and if Eq. (30) is not fulfilled, the solution converges tee a 
different solution of the diffusion equation. 

7. COMPARATIVE ANALYWS FOR 
A BIVALUED MAGNETIC RELATION~WIP 

The introduction of a bivalued B/H relationship does not change the linear 
character of the difference equations. However, considering a hysteresis loop as rhe 
B/H relationship (Fig. 2c) implies that the dB/ilsH function stays positive, but not 
continuous. Consequently neither is the coefficient of the difference equation and 
thus, it is more complex to prove the stability and convergence of the schemes [Z]. 
lit should be noted that the discontinuity is of jump type, always remaining f-nite 
and bounded by the value (dB/dH),,,. 

We have verified experimentally that the Dufort-Franked scheme is not con- 
vergent with this B/H relationship, coinciding with the remarks made by other 
authors [3, 161. 

Likewise, we have verified that the implicit schemes remain stable [17]. Given 
that the implicit scheme has the same disadvantages as the Crank-Nicolson scheme 
but has not the advantage of the large time step for a given accuracy, we can con- 
clude that, of the schemes considered, the most adequate to solve numerically, the 
diffusion equation with a bivalued B/H relation, is the Crank-Nicolson scheme. 

In Fig. 9 we can see the behavior of the solution obtained with this scheme for a 
sample of conductivity c = 4.21 x 10P6Q ~~ r m ~ ’ and halfthickness a’= 7.5 mm,. The 
magnetic characteristic is approximated by a series in arctan powers [ 171. T’i;.e 
applied field is 1000 A/m and the frequency 50 Hz. From Fig. 9 the good behavior 
of the solution can be verified, showing a great regularity in t e convergence. In this 
case we cannot estimate a possible limit solution. 

IVALUED MAGNETIC RELATIONSHIP VARIABLE WITH 

Given the instability of the Dufort-Frankel scheme, and the choice, among the 
implicit methods, of the Crank-Nicolson as the most adequate scheme to solve rhe 
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FIG. 9. Calculated amplitudes of H as a function of the depth in a nonlinear material with a bivalued 
B/H relationship, using the Crank-Nicolson scheme. 

diffusion equation, we could state that the comparative analysis of the considered 
schemes is concluded. However, we must verify that this scheme remains suitable 
when a bivalued magnetic characteristic variable with depth is used. This type of 
characteristic is our main objective. 

Such a magnetic characteristic supposes the existence of a different hysteresis 
loop each depth within the magnetic material, depending on the maximum 
amplitude reached by the field H. If the choice of the correspondent loop is not ade- 
quate, the difference equation cannot be compatible with the diffusion equation. 
The reason being as follows: Given that the choice of the loop depends on the 
maximum value reached by H, if this is evaluated by excess the magnetic charac- 
teristic followed will be a larger loop than the correct one, and thus, the dB/dH fac- 
tor will be evaluated by excess too. As this term is related to the field penetration in 
the material, the following maximum will be evaluated by defect, and hence the 
corresponding hysteresis loop will be smaller and in consequence the subsequent 
calculated maximum will be greater. This process can continue in such a manner 
that the solution obtained be a nonsymmetrical wave that practically never reaches 
the steady state conditions. 

We have solved this problem by incorporating the accelerator procedure not only 
to the Hj,k values, but also to the maximum values, because these determine the 
loop for each depth. It must be pointed out that the justification of this method is 
based on the application of a further boundary condition, extended now to the 
maximum values. If we call the maximum value reached by the calculated field on a 
depth i. d-x during the half cycle n 

Ri,, = (Hi,kLx; k=(n-l)N/2,nN/2 (35) 
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FIG. IO. Calculated amplitudes of H as a function of the depth ir! a nonlinear materlai Gth a farnil 
of bnvalued. B/H relationship curves. 

we must apply the corrector factor 

Rj = 4( H,,, + F&n ~ 1 j i3sg 

an.d thus the corrected maximum values are 

IT;, = R,, - Ki = +( If&,: - iq+ ~ l ). (37; 

With the application of this equation once every half cycle the steady state is 
reached with a few half-cycles, typically 5 to 10, depending on the saturation degree 
of the sample. Thus, the waves for each depth are symmetrical, reaching csrrectly 
the steady state. 

In Fig. 10 we have represented the amplitude of the calculated solution using tne 
Crank-Nicolson scheme and for the material of the Fig. 9. Mere the magnetic 
characteristic is simulated by a family of static loops (see Fig. E I ) approximated by 

FIG. 11. Family of static loops used as magnetic characteristic 
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a mathematical model [lS] which allows us to know each of the interior loops 
solely from a representation of the exterior loop, the magnetization curve and the 
maximum value reached by H. The fast convergence of the solution can be seen. 
This is due to the application of the accelerator procedure to the maximum values 
reached by the field H, which determine the interior loop and guide the solution in 
such a manner that the convergence is quicker. 

9. CONCLUSIONS 

To select a finite difference scheme to solve the nonlinear diffusion equation, a 
comparative analysis of the main difference schemes was carried out. Given the dif- 
ficulties introduced by the nonlinear magnetic relationship in the diffusion equation 
we have put forward an ordered comparative study. First, the linear problem was 
studied and thereby, knowing the solution, the references to make the comparison 
were fixed. Next, a nonlinear monovalued B/H relationship was considered and it 
was found that the Dufort-Frankel and the Crank-Nicolson schemes were the best. 
The former, being an explicit scheme and having a truncation error which can be 
similar to the Cranky-Nicolson one, seems to be more suitable. However, the 
introduction of a nonlinear bivalued E/H relationship in the diffusion equation 
makes the Dufort-Frankel scheme unstable and thus, the Crank-Nicolson scheme 
gives the best results. It was verified that this scheme preserves its characteristics 
when the bivalued nonlinear B/H relationship depends on the depth in the sample. 
In conclusion the Crank-Nicolson scheme was selected to solve the nonlinear dif- 
fusion equation. 
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